Optimizing data search and retrieval in a
semistructured database system

Amparo Lépez Gaona and® and Andrés Lépez Capistran?

Facultad de Ciencias, Universidad Nacional Autonéma de México, México D.F. 04510

Abstract. The semistructured data model implemented in a database
allows management data without any restriction to its structure. This
freedom offers the possibility to store data (like XML) in a more natural
way, instead of trying to adapt other models to handle this kind of data.
However, data searching is a hard task because it has to examine a great
amount of the database before being able to determine it has found
the relevant data, this is due to the lack of knowledge about the data
structure; this task may be too expensive. In this work we present a
technique that is less expensive for the system, this technique is based in
a dynamical scheme (called data summary), that reflects the structure
without any data repetition and the scheme has a direct link to the data

in such way that retrieving the relevant data is a simple and efficient
task.

Keywords: semistructured data, query optimization, data summary.

1 Introduction

Today, there exists a vast amount of techniques aimed to ease query execution in
DBMS. This systems are so complex that they are separated in several compo-
nents, each having their own optimization techniques. In this work we describe
the techniques used in the so called query processor, which its responsabiliy is
to translate from a query statement to the sequence of basic operations of the
internal storage for the database.

There are several types of optimization in the query processor, spanning from
the logical level to physical level. Some algebras have been defined for handling
semistructured data and XML [2,1] and there are some other techniques at the
logical level; this techniques are adapted from the well known “Push Selections
Down” technique of the relational algebra (4].

At the Lore project [7, 9, 6] has been proposed several optimization techniques
which are applied in the query processor; however, these optimizations are based
on data access statistics, besides, their logical plan as well as the physical one
are so related to the basic operations of the internal storage of its DBMS, that
makes it difficult to adapt their techniques to a diflerent DBMS, particularly
those not using the same basic operations for the internal storage.

In this work we propose optimization techniques at the physical level, our
techniques are directed towards data search and retrieve form a semistructured

© A. Gelbukh, C. Yafiez Mdrquez, O. Camacho Nieto (Eds.)
Advances in Artificial Intelligence and Computer Science
Research on Computing Science 14, 2005, pp. 221-228



222 Lopez Gaona A., Lépez Capistrdn A.

data (SSD) source like XML: We base our optimizations on the automata theory
(5], specifically we use the transformation of a Nondeterministic finite automata
(NDFA) to a deterministic finite automata (DFA), adapting that algorithm for
the transformation to the SSD model.

2 Information search and retrieve in a semistructured
data source

The SSD model has been defined [11] as a directed graph with labels on its edges
and a special node, the root, which is used as an starting place for information
searching. We use path expressions in our query language (3] as the mechanism
that allows us to describe where the data of interest are, this data will be used
in a query. Path expressions are defined as:

Definition 1. A path expression is a sequence of edge labels l;.l2.l3. . . l, where
each [; with i=1...n is and edge label in the semistructured data graph. The
result of a path expression l3.l5.l3. ..., applied on a data graph, is a collection
of nodes v, such that exists edges (I1,7), (7, l2,v2), (v2,03,v3),. - - (Un—1,ln, vn)
where r is the root.

In order to make every graph’s root content in a semistructured database,
it is necessary that a labeled edge aiming towards the root exists. That edge's
label will be the name of the graph it aims to. A graph with this characteristic
is known as a ssd-Table in the definition of the query language Ssquirel [3], and
a set of SSD-Tablas defines a semistructured database.

Secondary storage (disk) access are tended to be considered as the main unit
to measure the database performance, because these actions are the ones who
most slow down a query execution, something that is caused by the access time,
search time, etc., the hard discs have. More than other mechanism used within
a query in Ssquirel, path expressions are those who most use secondary storage
access.

In order to show the excessive amount of disk access required to evaluate a
path expression (without using any optimization technique), next it’s shown a
path expression evaluation: Inventory.building.floor.equipment.desktop.
mouse over the database in figure 1, which was specifically designed to demon-
strate clearly the big number of access needed to found path expression’s result.

If it is considered that the ssd-Table “Inventory” has 150 buildings, each
with an average of 3 floors and 10 computers per floor, there are 4500 desktops,
where only 300 have mouse’s information. We have to take in account that for
each time children’s retrieve is needed, a access to disk is taken. Therefore, to
evaluate this path expression the following amount of access is needed:

— 1 access to retrieve the SSD-Tabla “Inventory” id.
— 1 accesses to retrieve the buildings.

— 150 accesses to retrieve the floors.

— 450 accesses to retrieve the equipment.



Optimizing data search and retrieval in a semistructured database system 223

Inventory

(

building bur

building

149 buildings...

description

floor

ore
"IIMAS" . :
nlyc/\ﬁm:pment HW'PH‘C"‘
"first ;;oor"

" deskto
fiest "3 p desktop dcsktopi M
. 9 desktops ..

"M@'ss@ " i "—68' HP8776" st@m"@sw "RRTSS"

P7896"

Fig. 1. Example semistructured database

— 450 accesses to retrieve the desktops.
— 4500 accesses to retrieve the mice of each desktop.

Total: 5552 accesses.

From the last 4500 accesses, only 300 will be really useful, in other words,
there is a 93% of accesses wasted.The main reason of this to happend is that
the DBMS can not determine which desktop doesn’t have its mouse registered,
know it is only possible after having tried to retrieve it.

Due to the above mentioned, a mechanism to search an retrieve information
that could reduce the number of access in the process was needed.

3 Optimization techniques

In order to reduce the number of access to disk needed when searching data, we
describe a technique that puts together all different paths in a data graph. Next,
we'll see how to retrieve the collection of node that represent a path expression’s
result using this technique. Flrst we will describe the main structured used by
this technique.

Definition 2. A path of labels is a sequence of edge labels {y.l5 .. .l, where each
l; with i=1...n is a edge label within the semistructured data graph, and for each
couple /;.l;4; with j=1...n-1 exists a connection between them with a node.



224 Lopez Gaona A., Lopez Capistrén A.

Definition 3. A data summary for a ssd-Table T is a directed graph G with
labeled edge, where for each path of labels in T, exits an equivalent path in G,
and for each path of labels in G, exists at least one in T'.

For a ssd-Table sharing information with another, the data summary will
consider every path of labels that can reach a node, starting in the ssd-Table’s
root. We have to consider if the source ssd-Table where we are going to construct
the data summary doesn’t have any path with similar labels (this happens when
the ssd-Table is already a DFA), this could made the data summary equal or
bigger than the ssd-Table itself.

3.1 Expanded path expressions optimization

Definition 3 opens a possibility to check if a path expression will return data
at compile-time. Furthermore, it is possible to expand those parts in a path
expression that use wild-cards (character # in Ssquirel) or use closure operators
(Kleene star “+”, optional “?”, repeatable “+”). This technique is based in the
one described in [10]. It only considers paths that it is known will return data.
The optimization is defined as follows:

Optimization I. Rewrite queries’ path expressions replacing those parts
that use close operators (*,+,7), at label level, with an equivalent that is found
traversing the original path expression over the data summary.

For example, the path expression: Inventory.#*.monitor would be ex-
panded to Inventory.building.floor. equipment .desktop.monitor

By doing this, the DBMS will not traverse those branches that will not reach
the end of the path expression defined before. This optimization is made at

compile-time.

3.2 Search data optimization

For path expression that do not use closure operator or wild-cards, we haven't
defined yet a mechanism powerful enough to help the retrieve of information.
The data summary is extended by adding more information about data.

Definition 4. A key-valued data summary for a ssd-Table T is a directed graph
G with labeled edges, where for each label path in T exists one equal in G, and
for each label path in G exists at least one in T; also, for each node in G it is
bound a node collection of all SSD reachable from T’s root through L, where L
is the label path described from G’s root to that node.

With a key-valued data summary is possible to get the node collection needed
from a path expression. This is done traversing the key-velued data summary
instead of the original ssd-Table graph. The optimization is defined as follows:

Optimization II. For all path expression l;.l2...l, where l; is a ssd-Table
name storage in the database, and it has, at the evaluation moment, a key-
valued data summary, the node collection (if there is) that it returns is retrieved
traversing the key-valued data summary.



Optimizing data search and retrieval in a semistructured database system 225

There are to ways to bound the node collections reached by each node within
the key-valued data summary:

— Using a special primitive data type which will hold all the above information,
linking each of them with a labeled edge Data-. (Data- is a label reserved
to this special link).

~ Using edges with special labels Data- between original data and the key-
valued data summary.

Both choices do work, but, the last one has a characteristic that makes it
easier to keep update, because the original data and the key-valued data summary
are connected. One example for this connection is shown in the figure 2.

A similar key-valued data summary is used as an index called “vpath” in
[8]. Nevertheless, the connection between data (ssd-Table and summary) is not
defined as the one presented here, something that makes the “vpath” difficult
to keep updated.

Using this optimization technique, the node retrieval from the path expres-
sion before mentioned Inventory.building.floor.equipment.desktop.mouse
is done as follows:

— 6 access to traverse the key-value data summary following the path describe
by the path expression.

— 1 access to retrieve children connected with edges labeled as Data- from the
node recovered from the last point.

The number of access was reduced from 5552 to only 7, which is very notice-
able in this example due to the database’s structure, which it was defined as it
to help to visualize clarity the effect of this optimization.

3.3 Building a Data Summary

Building a date summary is similar to convert a NDFA to a DFA. There is a
very well known algorithm [5] that performs this action. It can be adapted to
the Semistructured model. To build it, each data graph’s node is taken as a
automata’s state and every data graph’s edge as a transition, taking edge’s label
as the transition character. To show this algorithm is beyond this paper and
its implementation depends directly on how as the semistructured data model
constructed.

It is important to point out one implementation detail about this algorithm.
The NDFA to DFA conversion algorithm uses a search looking for a state set
already built. This make the algorithm to be a exponential complexity one. This
kind of algorithms are not desirable to be used in a DBMS, because a DBMS
handle a high number of nodes, making the build of the data summary something
very expensive. Thus, a good searching technique in this point is needed.



226

Lépez Gaona A., Lépez Capistrdn A.

Q 2ALG2
name

subject
“ICCI” Dats~

teacher Data—
."SLM"
. teachers o Da

subjec

ta—

Data

(MY
name,

%7,

Data-

Data-

Fig. 2. Teachers ssd-table with its key-valued data summary.

4 Performance testing

All previously described concepts have been implemented inside of a query pro-
cessor as part of a Semistructured Database Manager System developed at the
Science School, UNAM, which has made possible to carry on some impact test-
ing that the execution of the query experiments whether using a data summary

with identifiers. We have the following conclusions:

— In the worst case, to use the key-valued data summary implies traverses one
extra edge at execution time.

— In average, for big databases, there is a 25% execution time saved using the
key-valued data summary.

— For small databases (between 1 and 100 nodes) there is not a clear difference
using or not the key-valued data summary in the execution time.

— The required time to check which path expressions can start from the data
summary does not cause a significant waste of time.

Thus, the use of a key-valued data summary in a big database is income-

produced.



Optimizing data search and retrieval in a semistructured database system 227

5 Conclusions

Through this paper, we have described how it is possible to reduce the number
of access to disk needed to recover data from a semistructured data source.
We focused directly in path expressions, because they provide to the queries
the mechanism to access semistructured data. As we showed in the inventory’s
example, the DBMS needs to traverse all data graph branches to find the interest
data. This happens because the DBMS doesn’t have any knowledge about which
branches will fulfill the complete path described by the path expression. With
each branch needed to be traverse, the number of access to disk raise. Thus, a
technique to optimize the traverse of semistructured data was needed.

In order to make the DBMS not to consider those branches that will not
return any data, we proposed another structure that concentrates all different
paths that exist within the original data graph, this structure is called data sum-
mary. At the beginning, this summary is used to discriminate path expressions
that will not return data. Nevertheless, making a connection between the data
summary and the data itself, it is possible to recover the interest data traversing
the summary instead of the original data graph. By doing this, a greater number
of access is saved, because the DBMS traverses a direct path without crossing
any branch through it.

There are still other parts within a query to be explored that could get a
benefit with the assistance of the data summary in the semistructured data
environment. One of them would be to use the optimization II technique in a
way in which will return the largest amount of data and out of these get those
others related, something like reordering the join operators in relational algebra.

References

1. Beeri, C, Tzaban, Y. SAL: An Algebra for Semistructured Data and XML. In
Proc. ACM SIGMOD Workshop on The Web and Databases (WebDB'99), pp.37-
42. (1999)

2. Frasincar F., Houben G., Pau C. XAL: An Algebra for XML Query Optimization.
In Database Technologies 2002, Thirteenth Australasian Database Conference, vol-
ume 5 of Conferences in research and Practice in Information Technology, pages
49-56. Australian Computer Society Inc. (2002)

3. Egar Garcia-Cérdenas, Amparo Lépez Gaona, Salvador Lépez Mendoza. SSquirel:
un lenguaje de consulta para bases de datos semiestructurados. 6° Workshop
Iberoamericano de Ingeniera de Requisitos y Ambientes Software IDEAS’2003.
pp 322-327. ISSN: 84-96023-05-2. Mayo 2003.

4. Garcia-Molina H., Ullman J.D., Widom J. Database System Implementation. Pren-
tice Hall (2000)

5. Hopcroft, J.E., Motwani R., Ullman J.D. Introduction to automata languages, and
computation. 2"d Edition. Prentice-Hall. (2000)

6. McHugh J.G., Abiteboul S., Goldman R., Quass D. and Widom J. Lore: A database
management system for semistructured data. SIGMOD Record, 26(3):54-66. (1997)

7. McHugh J.G. Data Management and Query Processing for Semistructured Data.
Universidad de Stanford. (2002)



228

10.

11.

Lopez Gaona A., Lépez Capistrdn A.

McHung J.G., Widom J.. Query Optimization for Semistructured Data. Technical
Report, Stanford University. (1997)

McHung J.G., Query Optimization for Semistructured Data. Technical Rzport
Stanford University. (1997)

McHung J.G., Widom J. Compile-Time Path Expansion in Lore. In Proceedmgs
of the WorkshOp in Query Processing for Semistructured Data and Non-Standard
Data Formats, Jerusalem, Israel. (1999)

Suciu D. An overview of semistructured data. SIGACT New, 29(4):28-38. (1998)



